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Abstract— Data Visualisation and Analytics plays a key role in
providing a complete view and discovering the global/local patterns
hidden in the data. Conventional data visualization methods as well
as the extension of some conventional method are very narrow in
terms of the data type on which it is applicable. We present a novel
way of visualising data which can be generalized to any kind of data
format. Data Units Multi Digraph Model can encompass all varieties
of data and will be able give global/local view unlike others where
data is mapped to nodes in a graph or shown in charts. This research
project is a novel way of representing abstract data on the facets of a
cube. It involves visualization and navigation of abstract data mapped
to the facets of a cube.

I. PROJECT DESCRIPTION

We view a multimedial data collection as a “labeled multi-
digraph” over a finite set of ranked “data units”. Each data unit
is an ordered set of data components each of which posses an
identifier, a string name, an optional type or data rank, and a
collection of links to possible components satellite data or to
other data units. As an example, a university may be viewed
as a collection of data units each focused on a particular set
of fields of knowledge, sports or athletics (Rank 1). Each such
data unit in turn consists of a collection of departments (Rank
2) each of which can be also considered a data unit. The
components of each such data unit are mapped to the face
of a cube in 3D. All the data units on a particular rank are
randomly placed as a cube maze. Each data units contains a
set of components which has data specific to the entity and the
faces of the cube(data unit) correspond to particular “facets”
of the data. These data units are connected to each other based
on similarity measures calculated on each component for all
pairs.

II. INTRODUCTION

In many fields, visualisation has gained recognition as
potential tool to explore and understand data. Interaction with
the data plays an important role in information visualisation (
[1],[2], [3], [4], [5] ) . We develop an approach to visualise
multi-attributed data in a unified way. Various interaction
mechanisms are implemented to explore this data based on
the semantic closeness between attributes of data members.
We introduce Cube Maze as the main visual representation
tool to display multi-attributed data in a consolidated manner.
We view multi-attributed data as vectors of components called
data units. Grouping these k-components allows mappings of
each group onto each side of a cube’s inner wall.

OBJECTIVES OF THE PROJECT

We provide a novel interface(Cube Maze), various navi-
gation modes, and associated interaction tools. In this sec-
tion, we discuss related challenges and give an overview of
how our system tackles the aforementioned challenges. The
major challenge consists of visualising multi-attribute data
sets. Current exploration systems become so complex that
a user loses track of the path used to dive deep into the
represented data. For each feature described in the system, the
canvas gets redrawn without containing the path information
traversed by the user. Previous work has been published based
on multiple view approaches for a data containing vector of
attributes. These works use multiple coordinate views ([6],
[7],[8]]). One major challenge in today’s world is data analysis
by exploration. For example, exploring and evaluating in a
small time frame a university data consisting of departments
which consists of faculty members, students, administrators
and associated infrastructure. Similarly, data attributes for fac-
ulties contain biography, publications, projects, grants, awards,
students advised, courses taught. Also, consolidating data in
one single visual representation and exploring the data is a
complex task, even without factoring in the labor of finding
relations between various data units such as faculty members
or departments based on certain attributes. Current systems
in place don’t have a mechanism to support such endeavors,
i.e., explore data where all its facets are pooled in one view,
find relationships and navigate to data which share similar
attributes. In the same view, consider the scenario for movies,
health, sports, etc. There are no systems currently available
which provide all required information in one place and also
provide relationships between several of these entities based
on their attributes.

Our work focuses on overcoming the aforementioned issues
in designing a novel interface system for multi-medial data
which provides global and local contextual information with
easy navigation mechanisms. The basic data unit we use to
visualise data is a three dimensional cube. Various navigation
mechanisms are introduced to demonstrate hierarchy naviga-
tion from higher rank order to lower rank order units or to
navigate between cubes based on semantic relationships. These
semantic relationships are based on data facets similarity and
the system allows to a user to teleport from a selected cube
to another cube in global space based on EgoNet similarity
between the cubes.



Our goal is to enhance a user’s experience by creating a
simple novel and intuitive interface that helps overcome the
challenges mentioned above. In summary, the highlighting
points in our design are :
• visualisation all attributes of a data unit in one local visual

space.
• enhanced data exploration via novel interaction mecha-

nisms.
• visual display of semantic relationships between data

based on their attributes.
• furnishing a visual global context for local view.
In the following chapters, we present about the data model,

its visual representation, implementation specifics, summary
of findings and future work.

III. DATA UNITS MULTI-DIGRAPH MODEL

A. Data Model

We view a multimedial data collection as a “labeled multi-
digraph” over a finite set of ranked “data units”[9]. Each data
unit is an ordered set of data components each of which posses
an identifier, a string name, an optional type or data rank, and
a collection of links to possible components satellite data or
to other data units.

As an example, a university may be viewed as a collection
of data units each focused on a particular set of fields of
knowledge, sports or athletics (Rank 1). Each such data unit
in turn consists of a collection of departments (Rank 2) each
of which can be also considered a data unit with the following
set of components:

Dept = < Dept id, Type = Academic, Rank = 2, Name
= Computer Science, Fac = set of faculty, Co = set of
courses offered, Stu = set of registered students, Admin = set
of administrators, Digital Infrastructure = Digital equipment,
Physical Infrastructure = set of office buildings, ImageArchive
= set of Images , VideoArchive= set of Videos, AudioArchive
= set of Audio Recordings, WebArchive = set of Web Sites >

A Faculty member can be considered also as a data unit of
Rank = 3 with the following components:

Fac = < Fac id, Type = Researcher, Rank = 3, Name
= Pythagoras, Bio = Textual Description, Publications = set
of Papers-Books, Stu = set of registered students advised,
Pro = set of projects involved with, Co = courses taught,
Awards = Honors-Distinctions, ImageArchive = set of Images
, VideoArchive= set of Videos, AudioArchive = set of Audio
Recordings, WebArchive = set of Web Sites >

Two data units ( like Depts ) of the same rank can be “
semantically related” via some of their components. These
relations among data units can be explicitly annotated in the
data or they can be used to derive or learn other implicit
“latent” relations.

In our running example, two departments can share Faculty
members, Courses, Students, and Physical Infrastructure. To
account for this diversity of relations among two data units
we use the language of labeled multi-digraphs over a finite set
of vertices. In our case, each vertex corresponds to a data unit,

and between a pair of data units u and v we allow two types of
multiple labeled edges as follows: Component wise similarity:
The label of the i-th edge (u, v)i encodes a similarity between
the two i-th components of u and v Data Unit similarity:
the edge label encodes overall data unit similarity rather than
component wise similarity.

The notion of rank is intended to capture the level of
hierarchical containment among data units. As an example,
a university school is composed of departments whose basic
constituents are faculty members, students, administrators,
courses, projects, etc. Whenever these hierarchical relations
among data units are explicitly present in the data we model
them by an Explicit Directed Acyclic Graph that we call
EDAG. The rank of a data unit in this EDAG is the length
of its longest path to the set of EDAG source data units.

After all these preliminaries we are now ready to introduce
our Data Units Multi-Graph Model.

Concept 1. A data unit D = < C1, C2, .., Ck > is an ordered
set of k components Ci: i=1, 2, ... k. We denote by #(D) the
number of components of a data unit D. Each component Ci

has a descriptor that consists of a unique id, an integer rank
value, a string name, a type, and an optional collection of links
to data units of greater rank or to a sequence of data units of
the same rank. As an example: since a video is a sequence of
frames we can consider a frame a more atomic element than
a video and therefore the rank of a frame is not higher than
the frame of a video. We refer to these links as vertical data
links.

Concept 2. Similarity between data units
Given two data units Di= < Di,1, Di,2, .., Di,k > and Dj

= < Dj,1, Dj,2, .., Dj,l > of the same rank, their similarity
can be formulated in terms of the similarity of the EDAG’s of
Di and Dj when these EDAGs are explicitly provided with
the data. When this is not the case, we propose to treat Data
Units as simplicial complexes and obtain similarity measures
among them derived from their peeling vectors([10],[11]).
This approach has been successfully applied in Ref [12]
to the unraveling of the inherent structure encoded by the
peel distribution of any network. We propose to extend these
mechanisms to the case of labeled directed multigraphs since
in this case the neighborhood of each vertex can be seen as
the simplicial complex formed by its colored adjacent edges.
In this way, a plethora of similarity measures between two
complex data units can be derived from the combinatorial
structure of their corresponding simplicial complexes. This
approach can be readily applied at the component wise level
or at the entire data unit level.

Concept 3. Universal Labeled MultiGraph MUD = ( V=
{D1, D2, ..., Dn }, MS= {( Di ∼ Dj )} )

Consider a collection of data units V = D1, D2, ..., Dn and
denote by MS the block matrix that on entry MS[i,j] contains
the similarity matrix between the data components of Di and
Dj , i.e. the f,g entry of the similarity matrix is the similarity
between Di,f , the f-th data component of Di, and Dj,g , the g-
th data component of Dj . The pair (Di, Dj) is labeled by the
similarity matrix MS[i , j] . For future reference define Size(V)



= SumOf{#(Di): Di in V } and max(V) = Max{#(Di): Di in
V}.

We call the multi-digraph obtained in this manner, a MUD
with n data units Di and data units pair wise similarity matrices
MS[i,j]. Directed simple paths correspond to linear story lines.

In practice, only portions of this Multi-Graph are provided
as input and in this proposal’s project we will build a multi-
medial data exploration system that will provide users with
mechanisms to interactively explore, annotate, derive, and
synthesize the most “salient” features and directed paths that
can be traced and interpreted when querying and navigating
these multifaceted data sets. In other words, we want users
to be able to “extract the stories behind the data” or “to
create stories from the data that can be traced and verified
by a computer aided agent”. A natural question is then how
to define what a “data story” is. We suggest a mechanism to
achieve this in the next section.

Concept 4. Data Stories Some of the most basic elements
of a narrative are “its characters” and their “interactions”
through “time”. Since in our data model the basic “characters”
of a collection V are its “data units” and their multiple
directed interactions are encoded by their similarity matrix,
it makes sense to conceptually dismantle the overall Data
Units MultiDigraph into its max(V) component wise digraphs.
On each such digraph we can compute its strongly connected
components macro-DAG. Linearization of each of these DAGs
provides a partial order that can be interpreted as the “event”
partial ordering of the data units “story plot” when restricted
to a particular data units components entry type (the story
projections). The length of the longest path on each such DAG
can be interpreted as a data story completion time on that story
projection. Composition of these story projections via shared
vertices will allow us to identify overall data stories. This
method can be seen as an adaptation of an approach proposed
by [12] to analyze a variety of networks by decomposing their
edge set into maximal subsets of edges that are fixed points
with respect to iterative degree driven vertex deletion. The
approach has been applied to citation networks and literature
classics like “Les Miserables”[9] , and Danish Folklore [13]

In summary: any MUD = (V, S) whose edges are labeled
by Max(V) labels can be naturally decomposed into Max(V)
edge disjoint DAGs. Each of these DAGs provides a partial
order on the involved data units. Composition operations
among these DAGs provide mechanisms to build a variety of
complementary MUD stories. A simple mechanism to achieve
this is to take the union of all source data units across the DAG
projections. Notice that since there may be connections among
the sources in different DAGs it is natural to consider the
subgraph induced among the different iterative story projection
sources as important “events” in the Data story. Removing
these sources iteratively give us a natural coarse story flow of
“events” derived from the MUD connectivity. An appealing
aspect of this multigraph -strongly connected approach is that
the strongly connected components can be updated efficiently
in a streaming fashion [14].

B. Advantages of the Data Model

The data unit definition in the model can fit any multi-
attribute data set by grouping subsets of attributes into facets.
This model can be used to analyse and explore components
of each data unit via similarity measures between the different
data facets (cube faces). Grouping of cubes via similarity
measure can be achieved. A user can navigate between
cubes via relationship computed between cube face. These
navigation can be neighborhood navigation i.e. movement
between neighboring cubes or teleport which is bring cube
not necessarily a neighbor but out in the global space to the
visible screen space.

IV. MAPPING DATA UNITS TO THREE DIMENSIONAL
CUBES

This novel interface represents each data unit as a cube in
three dimensional space. A data unit may contain lower rank
data units as component or can be an atomic data unit. The
faces of the cube correspond to particular “facets” of the data.
This mapping takes into account the number of components in
the data unit and is based on grouping semantically coherent
components. One facet is reserved for EgoNet navigation and
the other facets are used to represent the remaining data
components. A cube’s EgoNet provides the user a global
context for the cube’s local space.

Higher rank data units contain components which in turn
can be data units. For instance, a university department as a
higher rank data unit contains faculty which can be considered
a lower rank data unit. Hierarchy based navigation allows
movement from higher ranked data units to lower ranked data
units. As an example, considering department as a data unit
of rank 2, it can be viewed as

Department = < name of the department, set of faculty, set
of courses offered, set of registered students, set of administra-
tors, digital equipment, set of office buildings, image archive,
video archive, audio archive, web archive >

Faculty data can then be mapped cube faces with compo-
nents:

Faculty = < name, biography, publications, projects, awards,
courses taught, students advised >

V. VISUALISATION

The system is designed in a layered fashion, moving from a
higher rank to a lower rank data unit. It also provides a clear
analysis and mapping of the data on each layer without losing
the global context.

A. Global View

The global space contains the set of data units of a particular
rank. The data units are represented as cubes placed adjacent to
each other in m rows and n columns [fig:1] in the canvas area.
We followed responsive design guidelines to accommodate
different screen sizes by adjusting the values of m, n and
cube sizes. Each cube in the global space displays a summary
of all its components. User actions influence the flow of data



Fig. 1. Global View

Fig. 2. Cube Face of a Faculty

which is reflected by changes in several visual mappings. A
detailed explanation of these visualisation is included next.

On the global space, the user can rotate each cube on its
local axis in the horizontal and vertical directions to view
all the cube face and the summarized information mapped
to them. In our example, the summarized information on
each face includes faculty image, keywords describing the
research area, videos from a faculty video archive, slide show
of image, office information, hobbies etc. To address the issue
of visualising user data in a constrained space, we enlarge
the face of the cube to cover the entire global space, thereby
providing more canvas space in order to include all user
information.

B. Local View

Clicking a cube triggers a swift transition from global space
to local space depicting the cube’s inner space. The transition
involves zooming in action on the faculty’s image until it
occupies the entire screen or the entire canvas space. It splits
in two halves with each half moving horizontally outwards
revealing the local space of that cube. This gives the the user
the impression that he/she has moved inside of that cube and
now all the cube walls are visible except the one behind. A
light object is placed in the center of the cube to allow the
user to see all the cube faces from user’s view point. The
walls/faces of the cube are mapped to the components of the
data units.

For this example, the components, < C1, C2, .., Ck > are
grouped into 5 clusters as was discussed in section [fig:IV]
and the ceiling plane contains the EgoNet. In our example of
faculty as data units, the facets display “Biography”, “Publica-
tions”, “Projects”, “Grants/News”, “Students Advised, Courses
Taught” and the ceiling face contains the ego-centric network
of the selected data unit representing the global context of the
current local view. The standard layout of the cube is shown
in [fig:2]

“Biography” contains textual information describing the
selected faculty [fig:3]. It is placed by default at the center
face of the cube i.e directly facing the camera’s view. The
layout of the face is divided into 3 sections. The first section
on the top left contains the image and string name to which
the cube belongs to, the second section describes the position,
email address, department etc. positioned just below. These
two sections take one quarter of the face. The rest of the
space is utilised to display the faculty members biography.
The information mentioned here is merely of descriptive type
and is not interactive.

Fig. 3. Cube Face of Biography

Fig. 4. Cube Face of Publications

“Publication” is the list of papers published by the faculty in
various conference/journals [fig:4]. For a faculty data unit all
the publications are displayed as nodes and this set of nodes
are mapped on to the right face of the cube in the default
orientation. Moving the mouse over each of the dot, a small
display window appears containing “Title” and “Authors” for
the corresponding paper. A User can also visit the selected



paper by clicking on the dot which brings for view the web
content of the page to a window attached to the plane.

The “Projects” face contains the collection of scholarly
projects conducted by the faculty [fig:5]. It is shown as an
image on the left followed by a brief about the project on the
right. The projects can be browsed sideways (left, right) to
reveal more. This projects information is mapped to the left
face of the cube.

Fig. 5. Cube Face of Projects

“Grants/Events” provides information in a time line about
grants, awards, news published related to the faculty [fig:6].
“Grant Name”, “Research Title”, “Research Brief”, “Grant
Money”, “Time Period” are the types of information mapped
to this face located at the bottom of the cube.

“Students Advised and Courses Taught” are visually repre-
sented as a horizontal tree where the leaf nodes are the students
and courses [fig:7]. The student information mapped contains
information on name, current status, degree of study, place
of work (if any). The other vertex contains courses taught
containing course name, course description and webpage link
(if any). This is mapped onto the face behind the user.

Fig. 6. Cube Face of Events

The ceiling wall contains the Ego-Centric Network
”EgoNet”[fig:9]. The EgoNet contains the global context infor-
mation in local space. The subgraph induced by the neighborof
a node X in a graph is known as its EgoNet [fig:8]. For a
faculty, the EgoNet contains all the nodes which are its direct
neighbours and the connections between them without the
source node (X) and its edges connecting X to its neighbors.

Fig. 7. Cube Face of Students Advised and Courses Taught

The resulting graph is the ego-centric local sub graph for X.
We have mapped multi-medial data to this graph as a labeled
(colored) multi-digraph. Nodes are connected based on the
what type of similarity they share. In our example, there are
K=3 types of similarities defined, which are relations based
on “research area”,“publications” and “biography”. Each is
mapped to a specific color. The nodes and edges are colored
among these colors. A node can have K different colors
including the color when the outgoing/incoming edges are
nil and two nodes can share at most K edges if they share
similarity on all K similarity types. The similarity weight
ranges between 0 and 1, We have calculated the mean and
standard deviation for each similarity and display on the
EgoNet those edges whose similarity lies between the mean
and the standard deviation. Apart from the above components

Fig. 8. Sample EgoNet of Node Seven

Fig. 9. Cube Face of EgoNet



Fig. 10. Labeled Multi-DiGraph

mapped on each face of the cube, icons are added at the
bottom of each face to provide semantic relationships of the
current selected cube to that icon’s type. Some of this semantic
information can be neighborhood information or cubes related
to the current one based on the face the icon is mapped to
in our faculty data. These icons are faculty images mapped
at special locations of each face. Clicking on these icons
starts a visual transition that shows neighborhood navigation
to the cube sharing that face to the current local cube. This
pushes the original cube out of the screen in the opposite
direction. For similarity semantics, clicking the icon brings
the corresponding cube to the visible screen space. The only
difference between neighborhood semantics and similarity
based on face semantics is that the former moves only in the
domain of neighboring cubes, but the latter brings the cube
positioned anywhere in the global space to the front of the
camera.

C. Labeled Multi-DiGraph View

We view data units (cubes) as nodes in a multi-graph. These
nodes can have k types of edges based on k-attributed data
units. An edge between two nodes represents a relationship
shared by the nodes based on that particular attribute. These
edges are color coded symbolizing the color of the wall that
these attributes are mapped to in their cubes. A node can have
at-most k outgoing edges. Based on the number of different
type of outgoing edges, a node is visually represented as sur-
rounded by concentric colored circles, each circle associated
with an edge type. This meaningful representation provides
information on the types of similarities this node shares with
its neighbors in the global space.

VI. SEMANTIC RELATIONSHIPS BETWEEN DATA UNITS

Cubes with shared faces present a higher degree of adja-
cency compared to vertical and horizontal “edges”, or extreme
points, all of which represent weaker forms of adjacency
among the data units. Overall, in a particular state of navi-
gation, a data unit may have 18 adjacent data units.
This adjacencies can be used to represent:

1) graph neighborhood relationship
2) and, similarity shared based on their endpoint com-

ponents. For example, relationships between faculty

members data units can be shown by computing sim-
ilarity measures on research area, publications, biogra-
phy, grants, news, awards, students advised” or courses
taught.

A. Graph Neighborhood Relationships

In these semantics, the signs mapped at the bottom of each
face in the cube represent cubes that are its physical neighbors.
In the global view, cubes can be grouped automatically in their
current global space layout according to their relationship with
other cubes based on certain selected components. Also, cubes
can be manually placed as neighbors to each other. In the local
view, each cube may have icon at the bottom of each plane
denoting its semantic relationship with the cube’s icon.

B. Facet Similarity Relationships

We calculate the similarity for all facets of the cube and
map the best matched case to each plane in the cube. For the
face containing the cube’s EgoNet, the cube’s data unit with
the highest score on the aggregated similarity measures among
the remaining faces is used as the corresponding navigational
sign.

Fig. 11. Global View: Showing Similar Cubes

Fig. 12. Grouping of Similar Cube at the Center

VII. INTERACTION MECHANISM

For visual data exploration, human computer interaction is
a necessity. Interaction mechanisms in well-planned modular
systems help a user choose relevant data subsets and adjust the



visual mapping to suit a particular course of visual exploration.
We present a high level description of our fundamental cube
maze interactions. To convey an impression of how these basic
interactions can be applied by users, they are presented in an
order that resembles a real usage scenario, rather than in an
order that relates to interaction complexity.

A. Hover

For a user to understand and explore the system, objects
should portray information readily without the user having to
perform some complex maneuvers. Hover is one such simple
tool, in which a user moves the mouse over on an object the
corresponding information is displayed. The Scenarios in our
Cube Maze where hover is utilised are:

1) In the global view, hovering over a cube brings to view
the data units “name”, and its attribute links such as
“similar”, “order” and “research area” [fig:1].

2) After a user clicks the “similar” link on a cube, the cubes
which share similarity are moved towards the user in the
z-direction. Hovering on any of these cubes, displays
relationship between this cube and the cube on which
the user clicked similar [fig:11].

3) In the local view, the face containing the publications
contains nodes which represent publications. On hover-
ing the mouse on any node, a small window appears to
describe the “Title” and “Authors” for the corresponding
research paper [fig:4].

B. Click

A user can perform click operations that bring to view
faculty member based on their research interests. The system
visually groups them together at the center of the global
view [fig:12] the user can double check and see each faculty
members research area. On double click, a scene transition
action is triggered which renders the local view for the selected
cube. In the publication facet, clicking a node creates an i-
frame window to display the webpage for that publication.
Clicking is used also to pan projects sideways [fig:5]. On
double click of any cube face, the face rotates to bring that
face to the center facing the user [fig:13]. In the EgoNet view
and in the labeled multi-digraph view, single clicks brings to
view the neighboring nodes of the selected cube[fig:14]. On
double clicking, the EgoNet of the selected cube is appended
to the existing EgoNet. By clicking on the teleport button, the
user is moved in the global space to the selected cube.

C. Drag and Drop

A user can drag and drop cubes. It means a user can drag
a cube by clicking and holding onto the mouse and drop it
by releasing the mouse on top of another cube, the below
is displaced to fit the dragged cube in the position occupied
by the bottom cube. The user is given two mechanisms to
complete this action:
• Lets denote the cube being dragged as ”source cube” and

the cube at the position (index) where the source cube
is dropped at, the ”destination cube”. The destination

Fig. 13. Cube Rotation in Local View

Fig. 14. Showing Neighbor Nodes of a Highlighted Node in the EgoNet View

cube moves out in the z-direction allowing for the source
cube to take its position. Afterwards, the destination cube
moves to the position previously occupied by the source
cube.

• Using the same convention as above, the destination cube
shifts side ways either to the left/right based on the hole
created by the source cube which in turn pushes the rest
of the cube filling the source cube’s position and the
source cube taking the position of the destination cube.

D. Similarity Sliders

In the labeled multi-digraph view, each edge contains a
similarity weight. Sliders are provided to put a threshold on
the edge to be displayed[fig:10].

E. Zooming, Searching and Selection Filters

Using the zooming feature, a user can focus on a particular
section of the entire graph. A pinch-to-zoom mechanism is
used for this purpose.Option of finding a faculty is provided in
the global view [fig:1] and in the multi-digraph view [fig:10].
A Check box option is provided for the EgoNet and the graph
view inorder to make data exploration more convenient.

F. Key Board Mapped Events

Key Board Mapping interactions are provided on this state
of the interface. The user can hover on any cube and press the
arrows (←,→, ↑, ↓). On pressing these keys the cube rotates
on its local horizontal and vertical axes [fig15]. Key board



Fig. 15. Local cube rotation in Global View

Fig. 16. Cube Face expansion to Entire Canvas Space

mapping is provided to expand the image/information mapped
to the cube face to the entire canvas size giving clarity on the
mapped information [fig:16].

VIII. DESIGN AND ARCHITECTURE

The above challenges are daunting in nature, so it becomes
very important to carve out a modular system design to accom-
modate different sections of the code without entanglement.
In this section, we present the system layout and provide an
example based on it.

We have followed a Model-View-Controller (MVC) design
to implement Cube-Mazes. The Model represents an object
carrying the data. The View is focused on the visualisation
aspect on the front end using data received from the model.
The Controller is the layer in between the Model and the
View. The controller controls the flow of data into the view
and updates the model whenever the data changes.

Fig. 17. System Design based on MVC Design Pattern

A. Model

The model is designed to allow access to each attribute
without having to access the entire database. The entities in the
model are “Faculty”, “Publication”, “Project”, “Students Ad-
vised”, “Courses Taught”, “Events”. Fig:18 depicts the schema

diagram of the model. These entities are created to contain
information pertaining to each attribute in each data unit. Each
data unit has an identifier which is a unique id. In our example,
we can consider the “Faculty” list as nodes, each is represented
as a cube in our system and the edges among them are
determined by the similarity measures computed between their
facets. These data facets can be entities themselves or entity
attributes. Entity-Relationship diagram needs to be sturdy and
robust for quick access of the data objects. This makes the
visualisation and interaction both flexible and enhanced.

Fig. 18. Entity-Relationship Diagram

B. View

The visualisation provides a couple of dedicated views,
Global and Local. Each view is designed as a large inter-
active component that implements its own visual mapping
and interaction as well as a common interface to access the
data and visualization parameters. We have used two graphics
engine to drive this visualisation part with animation and
interactions. We use a three dimensional graphics engines that
uses WebGL for rendering three dimensional objects and for
the two dimensional graphics engine we use HTML and CSS
for two dimensional drawing. Most of the latest browsers
support both 3D and 2D drawing. The real challenge was
merging these two worlds together as the WebGL rendering
engine is loosely coupled with the DOM element [fig:19]. The
layout of the interface consists of two dimensional elements
attached to these three dimensional objects. This design pattern
has made way for our content to become dynamic. The three
dimensional layout or two dimensional drawings can change
without affecting each other.

In the Global View, the data units represented as cubes are
rendered as a three dimensional object using WebGL and are
placed next to each other in rows and columns. In the Local
View, each data unit is mapped to the entire screen space to
give the user a feeling that he/she is placed inside the cube
and is looking at the wall present in front. The user can see
sideways and rotate the cube in the horizontal and vertical



Fig. 19. Bringing Three Dimensional and Two Dimensional together.

direction to bring any plane/wall to the front. Each wall is
mapped with a data facet to yield information about the data
unit.

Another module, completely based on two dimensional
drawing focuses on the multi-colored multi-digraph. In this
view, we draw cubes as nodes of a graph and a node can
have k type of edges. These edges are defined for each
component in the data unit, so for a k attributed data unit,
a node can have at-most k edges. These k edges are color-
coded with the color as the wall in the cube which contains
its corresponding attribute. The edge computation is based on
the relationship two nodes share between each attributes in a
k attributed data unit. Similarly, nodes are filled with colors
based on the different types of outgoing edges. Each edge
has certain similarity value mapped to it. To assist the user in
interactively exploring the data and the parameter space, we
have incorporated a slider mechanism to add or remove edges
based on mean and standard deviation for the k components
in the data unit.

C. Controller

This regulates the flow of data from the model to the view.
Currently, we do not update the model on request from the
view. In information visualization, interaction is modeled as
adjustment of the data model, which includes the raw data
and its visualization parameters [15]. Basic checks are put in
place for determining the validity of the requested parameters,
which control the movement of data to the front end. There
are two ways to adjust drawing in the front end, either by
direct manipulation or via dedicated graphical user interface.
Further distinction has been made in differentiating the global
effect from the local effect mechanisms. For example, in the
global view rotating a cube is a local effect but grouping cubes
based on relationship changes the global layout. Interacting on
a single cube in the global view pushes information only about
the selected cube. In case of a local view, data sent from the
controller contains information on all components of a data
unit. Apart from regulating flow of raw data, the controller
contains logic to process the data to determine relationships
between cubes based on attributes of the data unit. The
following subsection provides details on the algorithm used
to compute similarity measure.

D. Similarity Measures
In our running data example, the attributes of a faculty

are “publication”, “biography”, “project”, “news”, “students
advised” and “courses taught”. Let us take the case of finding
relationships between two faculty members based on their
publications abstract data.

We used web harvesting to collect the list of
publications[16] for each faculty in the department. Using
the publications list, we again harvest “abstracts” and add
them to our database. The next step in the pre-processing
creates bag of words model. This means that we create a
list which contains all the unique words in the entire corpus
(collections of publications) with no frequency count. We
create, for each publication, a vector of words with their
count. We use “TF-IDF”[17] (Term Frequency- Inverse
Document Frequency) to compute the weight of each term
in the corpus. Term Frequency is a count of a term in one
publication. Inverse Document Frequency of a term is the log
of the number of publications in the corpus over the count of
publications which contain the term. We smoothen the IDF
by adding one. The TF-IDF value is the product of TF and
IDF. Here, the publication is a vector where each component
of a vector corresponds to the TF-IDF value of a particular
term in the corpus dictionary. Dictionary terms that do not
occur in a document are weighted zero. Using this kind of
representation in a common vector space is called the vector
space model [?]. Before computing the similarity measure,
we group vectors of each faculty and normalize them, so that
the value is spaced equally for faculty with more publications
and faculty with less publications.

idf(t,D) = 1 + log
N

|d ∈ D : t ∈ d|
(1)

with,
N : total number of documents in the corpus, N = |D|

N
|d∈D:t∈d| number of documents where the term t appears.
We have used two kinds of similarity measures, Cosine

Similarity and Jacard Similarity. We have used cosine simi-
larity to avoid the bias caused by different document lengths.
The inner product of the two vectors (sum of the pairwise
multiplied elements) is divided by the product of their vector
lengths. This has the effect that the vectors are normalized to
unit length and only the angle, more precisely the cosine of
the angle, between the vectors accounts for their similarity.

similarity(Facultyi, Facultyj) =
~V (Facultyi). ~V (Facultyj)

|| ~V (Facultyi)||.|| ~V (Facultyj)||
(2)

Secondly, Jacard Similarity is based on intersection over
union of the set of objects

JS(Facultyi, Facultyj) =
|Facultyi ∩ Facultyj |
|Facultyi ∪ Facultyj |

(3)

where, Set Faculty is the cardinality of Faculty denoted by
‖Faculty‖ counts how many elements are in Faculty. The



intersection between two sets of Facultyi and Facultyj is
denoted by Facultyi ∩ Facultyj and reveals all items which
are in both sets. The union between two sets A and B is
denoted by Facultyi ∪ Facultyj and reveals all items which
are in either set.

E. Path Traversal Algorithm

Breadth First Search(BFS) is implemented on the Labeled
Multi Digraph and the EgoNet views. A node can be selected
by clicking on it or by using the locate interaction mechanism.
After that BFS is computed on the entire graph using the
selected vertex as source. Breadth First Search is an algorithm
for traversing or searching graph data structures. Starting from
the source vertex, it explores the neighbor nodes first, not
moving to the new next level neighbors.

IX. CONCLUSION

The main focus of the work was on portraying data in an
intuitive manner. We focused on a novel three dimensional
representation enhanced by various multi-attributed interaction
tools. These include hover, click, drag and drop, zoom, sliders,
check boxes, key board mapped events, and search option.
Cube Maze provides unified views of the multi-attributed
data at both global and local levels. The graph theoretical
counterpart of cube mazes is a labeled multi-digraph. The
labeled multi-diagraph provides an alternative view of the cube
similarities based on a variety of threshold values.

X. FUTURE WORK

Some of the possible pathways that could be undertaken to
make this work more robust and flexible are:

I If the data is not structured as Data Units, the system
needs to learn “Entity”, “Components” and “Data Units”
by adding machine learning recognition modules and
detect labeled data relationships.

II Since, the server side needs to maintain the correspond-
ing labeled multi-digraph among the discovered Data
Units, the Scalability of this multi-digraph needs to be
addressed both when the data is at rest and when the
data is being streamed.

III In this work, we have mapped Data Units into cubes in
3D. However, one could envision other visual represen-
tations and “novel” interaction mechanisms.

IV We did not focus in this work on visual analytics. We
intend to incorporate algorithms to:

i detect the most “influential” Data Units in terms
of their facet similarity.

ii discover the most “cohesive” clusters.
iii measure Data Units World Reachability.

V We would like to extend the work to cover more general
ranked data units, ant to provide specialized ways to
navigate between them. This will require us to extend
the strength of similarities to include lower dimensional
similarities via edge and vertex covering.
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