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THE WEAK BRUHAT ORDER OF Sz, CONSISTENT SETS, AND
CATALAN NUMBERS*

JAMES ABELLOft

Abstract. Chains in the weak Bruhat order 8 of Sy (the symmetric group on Z) belong to the class of
subsets of Sy over which unrestricted choice necessarily produces transitive relations under pairwise simple
majority vote (consistent sets). If for A = Sz we let T(A) = U, T(p) where T(p) = {(p;, pj, Px)|i < j <k}
and ¥(A) = {w €S;|T(w) = T(A)} the following theorem (among others) is obtained.

THEOREM. Forallqe€Ss, if A is a saturated chain under 8 then ¥(qA) is an upper semimodular sublattice
of cardinality | ¥(qA)| < TﬂTl(zllzzll ) = The | |th Catalan number.

From the Arrow’s Impossibility Theorem point of view, the results obtained here indicate that majority
rule produces transitive results if the collection of voters as a whole can be partitioned into no more than
(1212 + | Z|)/2 groups which can be ordered according to the level of disagreement they have with respect to
a fixed permutation p. On the other hand, by viewing Sy as a Coxeter group a “novel” combinatorial interpretation
of the collection of maximal chains that can be obtained from one another by using only one type of Coxeter
transformation is obtained.

Key words. weak Bruhat order, upper semimodular lattice, Catalan numbers, Arrow’s Impossibility Theorem,
Coxeter groups
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Introduction. The Marquis de Condorcet recognized nearly 200 years ago [12] that
majority rule can produce intransitive group preferences if the domain of possible (tran-
sitive) individual preference orderings is unrestricted. This phenomenon is commonly
known as the voting paradox (see Black [9] and Riker [20] for an excellent historical
account).

Domains for which the simple majority rule produces transitive results are called
here “Transitive Simple Majority” domains (TSM). The study of the structure and
cardinality of TSM domains has proven to be a combinatorial problem of an unusual
sort (Abello [1], [2], [4], Abello and Johnson [3], Arrow [5], Black [9], Fishburn
[15], Good [17], Ward [25]).

By restricting our attention to TSM domains that are subsets of the symmetric group
(called here “consistent sets”) we have given general constructions that produce “con-
sistent” sets of greater cardinality than all those offered in the past (Abello [2], Abello
and Johnson [3]). All the constructed sets are maximally transitive and they achieve the
best known (uniform) general lower bound.

A unified view of several seemingly different constructions of “consistent” sets has
been obtained by Abello [1] via the weak Bruhat order, 3, of S, (Bourbaki [10], Lehmann
[19], Savage [21], Yanagimoto and Okamoto [26]).

In this paper we will present the only known global structural properties of “con-
sistent” sets. Namely, we prove that each maximal “consistent” set that contains a max-
imal chain in g is an upper semimodular sublattice of {S,, 8). This offers a “novel”
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combinatorial interpretation of each collection of maximal chains in B whose elemen’
can be obtained from one another by using one type of Coxeter transformation (Benso
and Grove [6], Coxeter and Moser [13]). Moreover, we prove that each of these maxim:
transitive sets has cardinality bounded by the nth Catalan number. This provides th
unique nontrivial upper bound known to date.

We must remark that even though we restrict our attention to subsets of the sy
metric group, many of the ideas contained here are extendable to the more gener:
domains discussed in Chapter 1 of Abello [4], as they stand or with modification.

1. Preliminaries. Let (Z, <) be a totally ordered set of symbols of cardinalit
|Z| = neZ*andS; the group of permutations on = (we will be using one line notatio
for permutations).

DEFINITION 1.1. A set {u, v, w} < Sy is called a cyclic three-set if there are thre
symbols x, y, z € Z such that u™'(x) < u™'(y) <u™'(z), v’ i(y) < v'i(z2) < v'(x’
wl(z) < wli(x) < wi(y).

DEFINITION 1.2. A subset C of S; is called consistent if it contains no cyclic thre
set; otherwise C is called a cyclic set.

DEFINITION 1.3.

1. Forp €S;, let:

T(p)={(xy,2)Ip7'(x)<p ' (y)<p~'(2)};
P(p)={(x,VIp ' (xX)<p™'(¥)};
7(P)={(x,y)eN(p)Ip™'(x)+1=p~'(v)}.

We will refer to T(p), I'(p), and 7(p) as the sets of triples, pairs, and admissible adjacer
transpositions determined by p, respectively. If t € 7(p) then t(p) will denote the pel
mutation obtained from p by interchanging the symbols x and y where (x, y) = t.

ii. ForC<S;,let T(C)=Upec T(p), I(C) = U, I(p), 7(C) = Upec7(p). Not
that | T(p)| = ('?:") for |Z| 2 3. We will say that T(C) is a cyclic or consistent set ¢
triples depending on whether C is a cyclic or consistent subset of Sy, respectively.

The following are some elementary properties of consistent sets.

FacT 1.1.

1. Any subset of a consistent set is consistent and any superset of a cyclic set is cyclic

1i. The intersection of consistent sets is consistent but their union is not always cor
sistent.

1. |T(Sz)| = the number of different 3-permutations out of a set of | T |-elements

iv. IfC is a consistent subset of Sy then | T(C)| < 4 ('3).

2. A closure operator on Sg. The results in this section are independent of con
sistency.

DEFINITION 2.1.

i. Let ¥:25 — 25 be gjven by ¥(A) = M, = {weS;|T(w) = T(A)}.

ii. If A = Sy is such that ¥(A) = A then A is called a closed subset and if K < /
satisfies that W(K) = W(A) where |K| = min |B| (taken over all subsets B of A sucl
that T(B) = T(A)), then K is called a kernel for A.

Let Cx = {A < S;|K is a kernel for A }. The following facts are immediate fron
the preceding definitions.

FACT 2.1.

1. ¥ is a closure operator on Sz, namely, A < Y(A); if A < B then Y(A) < ¥(B
and V2(A) = V(A).

ii. There is a unique closed set in Cx, namely, Xx = ¥(K).
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iil. If K and K' are kernels for Cx and Ck-, respectively, and T(K) < T(K') then
Y(K) < ¥(K').

The preceding result means that a closed set is completely determined by its
kernels; moreover, any kernel K of a closed set Xk will do in the sense that if K =

{K,, Ky, - -+, K;} then a chain of subsets, { ¥; } .-, can be constructed such that ¥;
¥, fori=1,---,j— 1and ¥; = Xg, namely, ¥; = ¥({K,, ---, K;}). Note also
that by letting A, = ¥, and A;+, = ¥;,, — ¥;fori= 1, --- ,j — 1, we obtain a partition
(Ay, Az, -+, Aj) of Xk. So, if we can characterize the dependencies between A, and

A; we will have (perhaps) some information about the cardinality of A;, |A;|, which will
give us at least bounds for | Xx| = 1., |A;|. Therefore the study of the class of closed
sets in an independence system coming from a closure operator may be reduced to the
study of their corresponding kernels. Unfortunately determination of even a single kernel
K, for a closed set Xx seems to be a hard computational problem because if K and K’
are kernels for Xk and x € K it is not true, in general, that there exists y € K’ such that
K — {x} U {y} is a kernel, so there is not a suitable interchange property based on ¥
(see Williamson [24] for related topics). However, by relaxing the minimality assumption
of a kernel and by imposing a mild restriction on each A; we are able to characterize the
elements of A;+,. This is our intention in what follows.

DEFINITION 2.2.

i. A set of triples O = T(Ss) is called realizable if there exists A = Sy such that
T(A) = O. In this case we will denote M, = ¥(A) by Mo.

i. A set M = W(A) is called extensible if there is a transposition t = (x, y) and
an element p € M such that t € 7(p), (x and y are adjacent in p), and for all w € M,
w~H(x) < w!(y). In this case we will say that M is extensible by the pair (t, p). Note
that a set may be extensible by many different pairs (t, p).

THEOREM 2:1. Let M < S; be extensible by the pair (t, p) wheret = (X, y),p =
uxyv and let O = T(M). If w € Moutap)) /Mo then w = u'yxv’ where u’ € S, v' € S,,
(S, and S, denote the symmetric groups on the synmbols of u and v, respectively).

Proof. 1. First note that because O U T(t(p)) is a realizable set of triples the notation
MOUT(t(p)) makes sense. w € MOUT(t(p))/MO -> T(W) N [T(t(p))/O] # Q by the definition
of ¥ and because O = T(M).

i. @+ T(w)N[T(tp))/0]=T(t(p))/O = {(-,y,x),(y,x,—)} = w cannot
be of the form w = u'xyv’.

iii. So, w is of the form w = u'yAxv’ for some A < Z. The triples in w of the form
(¥, A, x) (if any) must be in T(t(p))/O because x precedes y in every permutation in
M, by hypothesis. On the other hand T(t(p)) does not contain triples of the form
(v, A, x) because t € 7(p); therefore, A = & and w = u'yxv’.

iv. Suppose now that u’ ¢ S, where p = uxyv. This means that there exists a sym-
bol ¢ € symbols of u’'/symbols of ¥ and w = ---c---yxv’, p = uxy---c---, (p) =
Uyx---C--- .

v. The triple (c, y, x) € O because x precedes y in every permutation in My, also
(c,y,x) € T(t(p)) by (iv), so (¢, y, x) ¢ O U T(t(p)) which means that w ¢ Mo Ut(t(p))>
(contradiction); therefore, symbols of ' = symbols of u.

vi. Finally, assume that there exists a symbol ¢ which appears in u but not in '
We can assume that w = «'yxv’ and t(p) =u’---c---yxv” (by v). In this case we
have that ¢ appears in v’ but not in v”, then w = «'yx---c--- and again the triple
(¥, x, ¢) ¢ O U T(t(p)), which means that w € MoUT((p)), (contradiction ); therefore,
symbols of u = symbols of u'.

(v) and (vi) together give us that if p = uxyv then w = u'yxv’ where u’' € S, and
v'es,. O
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The preceding theorem allows us to express in a very explicit way the relation:
between Mo yr(p) and My as stated in the following corollary.

COROLLARY 2.1. Let M < Sy be extensible by (t, p) wheret = (X,y),p=u
and let O = T(M). lfW € MOUT(t(p))/MO then t—l(W) € Mo.

Proof. Letp = uxyv and t = (X, ¥). W € Moutp)/Mo = W = u'yxv’, u' €
v’ € S, by the preceding theorem. This in turn implies that T(w)/O = T(t(p))
and T(t™!'(w))/T(w)c T(p) because t~!(w)=uxyv’, u'€S,, v'eS,; theref
T(t™'(w)) = T(p) U O = O, which means that t™!(w) € Mo. O

Corollary 2.1 tells us that the “extension” of a set M by a pair (t, p) is comple
determined by a subset of it, namely, {qe M|q = u'xyv’' withu'€S,, v'€S,,p=u
and t = (x, y) }. Note that the reciprocal of Corollary 2.1 is not true in the sense th:
can happen that t~!(w) € Mo and however w € Mo ur(«(p))- This motivates the follov
definition.

DEFINITION 2.3. If M < S; is extensible by a pair (t, p), then the projection se
M with respect to (t, p) will be denoted by [1?% and is defined as follows.

¥={qeM|q= uxyv' where ' € Su, v "€S,,p = uxyv, t =(x,y)}. With
definition we have the following corollary.

COROLLARY 2.2. If M is extensible by (t, p) and O = T(M) then Moyt
MU t(ITH)

Proof. The proof follows from Theorem 2.1. and the definition of [] .

We close this section by mentioning that if X is a closed set under ¥ and if t!
exists a sequence of palrs {(ti, P;)}i-1, such that T(K) = U’,_l T(P;) and each of
sets ¥; = W({P,, ---, P;}) is extensible by (t;, P;) fori= 1, --- , j — 1, then by let
A=V A= ‘I’i+] —W¥;fori=1,---,j— 1 we obtain a partition (A, - - - , A;
Xk, even though { P;}{_, is not, in general, a kernel for X . All of this is true indepenc
of the consistency of Xk. In the case that Xy is consistent then we can characte
algorithmically [] i, fori =1, ---,j — 1 by looking at the weak Bruhat order of
This is the purpose of the next section.

3. The weak Bruhat order of Sg versus consistent sets.

DEFINITION 3.1.

i. Foru=u;---up, let E(u) = {(u;, y)|i<j, w; <uy}. E(u)is commonly kne
as the set of noninversions of u.

ii. For {u, v} = S; we write,

a) u — v if there exists t € E(u) N =(u) such that t(u) = v.
We say in this case that u weakly covers v;

b) u = v if there exists t € E(u) such that t(u) = v. In this case we say th
strongly covers v.

ili. The weak Bruhat order of Ss, 8, is defined as follows.

u 8 v if there exists a sequence (Pg, - - -, Py), P;€Ss such thatu =Py, P, = v
P,_y— Pifori=1, ---, m (Lehmann [19], Savage [21]).

iv. The strong Bruhat order of Sg, 8, is given by u § vifu = Py, P = v
P,_, = P;fori=1, ---, m(Savage [21],[22]. Clearlyu 8 v—=>u 8 v.

FAcCT 3.1 (see Fig. 3.1).

1. uBvifand only if E(u) 2 E(v).

ii. The maps f(u) = u-I® gnd £'(u) = I®-u are order reversing involution
(Sz, B), i.e, £2(u) =uanduBv—> f(v)B f(u); similarly for £'(u), (1 is the idei
in Sz, IR is its reverse and - denotes the usual permutation multiplication).

iii. (S, 8) and {Ss, B) are posets with maximum element 1 and minimum eler
IR. Moreover {Sz, B) is a lattice by defining the join u \/ v of two elements u and
the minimum element p (in the weak Bruhat order 8) such thatp Buandp 8v v
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I,= 1234

T

zg- 4321

FIG. 3.1. Bruhat orders on Sy for T = {1, 2, 3, 4}. Solid lines denote the covering relations in the weak
order and dotted lines correspond to the additional covering relations in the strong ordering. The relevant trans-
positions are indicated on each edge.

defining the meet u A v dually, namely, as the maximum element p’ such that u 8 p’,
v B p'. In other words u Vv v = least upper bound of u and v in 8 and u N\ v = greatest
lower bound of u and v in B.

Proof ofi. That u 8 v implies E(u) = E(v) follows from the definition of §. In the
other direction, let j be the minimum i such that u; # v;, (if such j does not exist then
u = v and we are done). For this choice of j we have that u; < v; (< is the order of Z)
and if v; = uy then ux_, < uy because we are assuming that E(u) 2 E(v); therefore,
E(u)>E(t(u)) 2 E(v) where t = (ux-;, us). By repeating the argument we con-
struct a chain u = Py = - - - = P, with E(P,) = E(v), so Py, = v, which completes the
proof. O '

Proof of ii. Without loss of generality, take = = {1, 2, ---, n}. Then we have
f(u) = u- IR = uk, f’(u) = I*R-u = v’ with & = (n + 1) — y; and the result immediately
follows. O

Proof of iii. For the proof see Yanagimoto and Okamoto [26].

The following two lemmas give the first relation between the poset <Sz, 8) and the
class of consistent subsets of Sy. These results appear in Abello and Johnson [3] and
Abello [1], [4] but we reproduce their proofs here for completeness.

LEMMA 3.1. IfL is a chain in {Sz, B) then L is a consistent subset of Sy.

Proof (by contradiction). Assume that L is cyclic. Then there are three permutations
u, v, win L and three symbols x, y, z in 2 such that

u=...x...y...z...’
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We can assume without loss of generality that x < y < z (the only other essentially
different case is x > y > z, which can be treated similarly).

1. E(u) contains the ordered pairs (X, y), (x, z), (y, z) and at least two of these
pairs do not belong to E(v); thus E(v) Z E(u) which means that v ¢ u. Similarly
E(w) Z E(u) and then w 43 u. On the other hand E(v) contains (y, z), which does not
belong to E(w), then E(w) Z E(v), which means w ¢ v.

ii. E(w) contains (x, y), which does not belong to E(v), then E(v) Z E(w) and
vw.

(1) and (ii) together give us that v and w are not comparable and therefore u, v, and
w cannot be in the same chain (a contradiction). O

Example 3.1. The set {1234, 1243, 1423, 4123, 4132, 4312, 4321}, which is a
subset of S, 5343, is consistent because it is a chain in {S¢12343. B) (see Fig. 3.1).

It is interesting to notice that Lemma 3.1 is not true for the strong Bruhat ordering
8. For example, {2143, 3142, 4321} is a chain in {S;, ﬁ) however, it is not consistent.
This is due to the fact that 8 allows the interchange of nonadjacent elements.

The following is a simple but important property of maximal chains in S.

LEMMA 3.2. IfL is a maximal chain in Sz, B) then L is a consistent subset of Sy
such that |T(L)| = 4(3)and |[L| =(3) + 1.

Proof. That L is consistent follows from the preceding lemma. Now, |T(L)| =
(3) + (2) (n — 2) = 4(3) because maximal chains in 8 have length equal to (3). O

The interest of the preceding lemmas is that for any consistent set C it must be true
that | T(C){ = 4(3) (see Fact 1.1 (iv)) so a maximal chain has the maximum number
possible of consistent triples; therefore, any maximal (with respect to the noncyclicity
property) consistent set M which contains a maximal chain L must satisfy that
T(M) = T(L). NOW, ifL = (I = P(), P], T, P(;) = IR) with ti+1(Pi) = Pi+1 fori=
0,---,(3) — 1 and if L; denotes the unrefinable subchain of L running from I to P;,
ie,Li={qeL,18qBP;}, then we have that for each i (as above) ¥(L,) is a consistent
set which is exzensible by the pair (P;, t;+ ) in the sense of § 2; therefore, Theorem 3.2.1
gives important information about the class of maximal consistent sets which contain a
maximal chain in the weak Bruhat order. In fact it provides the basis of an algorithm to
construct these sets (Abello [1], [2]).

The preceding ideas carry over to a more general class of consistent sets which
contain subsets that are structurally equivalent to chains in the weak Bruhat order. To
this end the following definitions are in order.

DEFINITION 3.2.

i. L < S is called a pseudochain under 8 if there exists p € L and a map m:u —
p~'-usuch that m(L)is a chain under 8. If we want to indicate the dependency between
L and p we write L(p) for L. For our purposes any adjectives that apply to chains can
be used with pseudochains. Stanley [23] has counted the number of maximal chains,
|C], in B; then it follows that the number of maximal pseudochains is (n!/ 2)IC|.

ii. If L(p) is a maximal pseudochain and m(L)=(I="P,, - - -, P = IR) we write
Li={qeL 18m(q)8P}.

iii. For A = Sz, let Cov(A) = {(p, q) € A X A, p covers q under 8} and let X:
Cov(Sz) = {(x,y)€Z X Z,x <y} begiven by A\(p,q) = (x, y)if t(p) =qand t =
(%, ¥). X is called a labelling of the edges in the Hasse diagram of {8z, B). With these
conventions let TRAN (A) = A(Cov (A)).

iv. G, will denote the undirected (edge labelled) version of the Hasse diagram of
{(Ss, 8>, namely G, = (V, E) = (S;, Cov (Sz)) where the edge (p, t(p)) is labelled by
the two subset { x, y} ift = (x,y).

The following lemma states the equivalence between chains and pseudochains from
the consistency point of view and it identifies pseudochains in {8z, B) with shortest
paths in G,,.
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LEMMA 3.3. Let L(p) be a pseudochain in {Ss, B).

i. W(L(p)) is a consistent subset of Sz (see definition of ¥ in § 2).

ii. Ift, /€ TRAN (L(p)) thent # landt™' # [ (ift = (x,¥), 1™ = (y, x)).

iii. L(p) is a saturated (unrefinable) pseudochain from p to q if and only if L(p) is
a shortest path from p to q in G,.

iv. IfSPATH (p, q) denotes a shortest path from p to q in G, then SPATH (p, q)
is consistent.

Proof. For (i) note that L(p) is consistent because it is the image of a chain in 8
under a uniform relabelling, m, of the symbols of =, and chains in 3 are consistent by
Lemma 3.1; therefore, ¥(L(p)) is consistent.

For (ii) and (iii) note that if p = p;p2-* ‘Pn € Sz and t = (p;, pi+1) then t(p) =
p-I(1) where I = (i, i + 1). Now, left multiplication by a fixed permutation is an auto-
morphism of Sy that preserves adjacency in the weak Bruhat order (for example, p —
p'-p=Iandt(p)—> p~'-t(p) = I(1)); therefore, it does preserve distances. In particular
a shortest path SPATH (p, q) is mapped by left multiplication to SPATH (1, p~!1-q).
But shortest paths, in G,, from the identity I to any permutation w are saturated chains
in 8. This can be seen by induction on the path length which is nothing else than the
number of inversions of w.

(iv) is just the result of putting (i) and (iii) together. O

The preceding lemma will allow us to state consistency results in terms of shortest
paths in G, even if we give proofs of them only in terms of chains in (S, 8.

The following result gives information about certain subconfigurations of any con-
sistent subset M of Ss. Note that no assumptions are made about the connectivity (in
the graph sense) or maximality of M.

LEMMA 3.4. Let M be a consistent subset of Sz, @ € M, p € Sy and let
SPATH (p, q) and SPATH' (p, q) be two different shortest paths from p to q such that
t(p) € SPATH (p, q), t'(p) € SPATH' (p, q) where t and t' are two different adjacent
transpositions (see Fig. 3.2 below). Under these conditions,{t(p), t'(p)} <« M —>
tNt' =d.

Proof (by contradiction). (i) Assume thatt N t’# & and without loss of generality
lett = (x,y), t = (y, z) and suppose that SPATH (p, q) and SPATH' (p, q) are chains
in (S;z, B). With these assumptions q becomes a lower bound for t(p) and t'(p) which
means that the set of inversions of q, INV (q), contains INV (t(p)) U INV (t'(p));
therefore, INV (q) = {(y, x), (z,¥) }, which implies that (z, y, x) € T(q) because SPATH
and SPATH' are shortest paths.

FIG. 3.2. lllustration of Lemma 3.4. Note that P is not required to be in M.
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(ii) On the other hand, the fact that t N t' # & forces (y, X, z) € T(t(p)) and
(x,z,y) € T(t'(p)). (i) and (ii) together contradict the consistency of M. O

The fact that (Sz, B) is a lattice (Fact 1.iii) gives us the following corollary as a
special case.

COROLLARY 3.1. Let {q, W, v} « M < Sz and let t, t' be two different adjacent
transpositions.

L IfttwV v)y=w t'(wVvVv)=v,wfBaq,vBqandif M is consistent then
tNt' =d.

Dually we have,

it. Ift(iw)=w A v, t'(v) =w A Vv,qfw,qp vand if M is consistent then
tNt' = .

Proof. (i) and (ii) follow from the preceding lemma by takingp =w V vand p =
w A v, respectively. O

Maximal consistent subsets in the weak Bruhat order exhibit a “local semimodu-
larity” property which does not hold for the strong Bruhat order. This is stated precisely
in the following corollary whose content will be referred to as the Quadrilateral rule or
the Q rule.

COROLLARY 3.2 (the Quadrilateral rule). Let M be a consistent subset of Sy and
{w, v} = M. If there exist {p, Q} = Sz and two different adjacent transpositions t and |
such that (w) = q = t(v) and t "(w) = p = ["(v) then {w, v, p, q} < ¥(M) (see
Fig. 3.3).

Proof. The conditions imposed to / and t in the hypothesis hold if and only if
/Nt = and this in turn implies that T({p, q}) = T({w, v}) « T(M); therefore,
{p, q, w, v} = ¥(M) (this is not true if t and / are not adjacent transpositions and then
it is not true in the strong Bruhat order). a

In terms of the weak Bruhat order, the Q rule says that for any two elements w, v
of a maximal consistent set ¥(M), if their join, w V v, covers both w and v and if their
meet, w A v, is covered also by both w and v then {w, v, w V v, w A v} < ¥(M). This
resembles the definition of an Upper Semimodular lattice (Birkhoff [8]). However, the
problem here is that both conditions w V v = {w, v} and {w, v} = w A v are necessary,
neither one implies the other, and moreover it is not true in general that ¥(M) is even
a sublattice of Sz, 8). On the other hand, if M is a chain in 8 then ¥(M) is not only
a sublattice but an upper ssmimodular one as will be established in Theorem 3.3.

The following result is basically an iterated application of the Quadrilateral rule.

THEOREM 3.1. Let M be a consistent subset of Sz and let p, q€ ¥(M)
such that p = uxyv, q = u'xyv’ where u' € S,, v' € S,.. If there exists a shortest path
SPATH (g, p) « W(M) such that for all w € SPATH (q, p), w ' (x) < w™!(y) then for
all we SPATH (q, p), w = u"xyv” where u” € S, v" € S,,.

Proof (by induction on |SPATH (q, p)!).

FIG. 3.3. The Quadrilateral rule.
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Notation. If p € S; and a € 2, denote by p/, the permutation in Sz_ (,) obtained
by erasing a from p.

Basis. If |SPATH (q, p)| = 1 then there is nothing to prove.

(i) Induction Hypothesis. Assume it is true for [SPATH (g, p)| =j =k < ('H
and let |[SPATH (q, p)| = k + 1. Let w’ € SPATH (q, p) and /'(q) = w' where /' €
TRAN (SPATH (q, p)) and assume that ' N {x, y} # &. Without loss of generality
let /' = (a, x). By assumption #'€ S, and therefore a must precede x in p; therefore,
there exists / € TRAN ([w’, p]) such that [/ = (x, a), ([w, p] denotes the subpath of
SPATH (g, p) running from w down to p). Take the first such /in TRAN ([w’, p]) and
let w be the permutation in SPATH (q, p) to which / is applied, so w = u"xav” and w' =
(u'/z)xa(yv'). Assume now that there exists ¢ € u” such that ¢ ¢ u'/s, so ¢ ¥ a because
a¢u” and ¢ # y because w™!'(x) < w™!(y) by hypothesis; therefore, (¢, X, a) e T(w),
(x, a, ¢) € T(w'), which imply that (c, a, x) € T(/(w)) and (a, X, ¢)eT(p) N T(q).
This forces [w’, w] to contain a permutation w” which contains the triple (x, ¢, a) be-
cause to go from w’ to w, a and ¢ must be interchanged without interchanging (x, a)
by the choice of /, and for ¢ to precede x in w, at some point in [w’, w], c must be be-
tween x and a (the preceding argument depends exclusively on the connectivity of
SPATH (g, p) and on the choice of / = (x, a)). Therefore, {w", /(w), p} contains a
cyclic triple, namely, {(x, ¢, a), (¢, a, x), (a, X, ¢)} contradicting the consistency of
M. Up to this point we have proved that symbols of #”  symbols of u'/, and by a
symmetric argument we obtain that symbols of '/, < symbols of u", which means
thatu” €S, , w = u"xav”’, w’ = (u'/;)xa(yv’); therefore, the subpath [w’, w] has length

|[w’, w]| = k and satisfies the hypothesis of the theorem, so by Induction Hypothesis
every permutation on it is of the form u”xav” with u” € Sy, v* € Syvr, and if t €
TRAN ([w/,w])thentN/= .

(i) Now, the maximality of ¥(M), the fact that [w’, w] < ¥(M), and (i) allow us
to apply iteratively the Quadrilateral rule to get that [([w', w]) ¥(M), giving us
that the path (q, /(w"), I([w’, w1), [/(w), p]) is a path from q to p that is shorter than
SPATH (q, p), which is a contradiction; therefore, the original assumption that
IN{x,y} # & was false.

By (ii), /N {x, y} = & and then /(q) and p satisfy the hypothesis of the theorem,
and by induction we will be done. |

Theorem 3.1, coupled with the results of § 2, gives the following characterization
of extensible consistent subsets of Ss.

THEOREM 3.2 (see § 2 for related definitions). Let M be a consistent subset of Ss
which is also extensible by a pair (t, p) and let w € t(I11%5). If there exists a shortest path
SPATH (t~'(w), p) € ¥(M) and if ] € TRAN (SPATH (t7'(w), p)) thenINt = .
(We will refer to this theorem as the projection theorem).

(i) Proof. Ifwet(IIM) thent™'(w)€ ¥(M) by Corollary 2.1 and by the definition
of TIM.

Now, p € [I™ and SPATH (t™'(w), p) < ¥(M) satisfy the hypothesis of Theorem
3.1 because M is an extensible consistent subset of Sy ; therefore, SPATH (t~'(w), p) <
1™ which means that /N t = & for every / € TRAN (SPATH (t™!(w), p)). O

The preceding theorem tells us that within each connected component of an exten-
sible set, which is also consistent , the elements of 11}, are precisely those that are connected
by paths all of whose transpositions are disjoint from t.

A lattice semimodular property of consistent sets. Recall that a lattice L is upper
semimodular if it satisfies the following condition:

The U.S. Condition: For all elements w and v of L if w covers w A vthen w V v
covers v. The following seemingly weaker condition is sufficient to prove upper semi-
modularity (Birkhoff [8]):
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The W.U.S. Condition: For all elements w and v of L, if w A v is covered by both
w and v then w V v must cover both w and v.

As another application of the Q-rule we have the following result.

LEMMA 3.5. LetM be a consistent subset of { Sz, B). If ¥(M) is a meet subsemilattice
(join subsemilattice) of {Sz, B) with a maximum element (minimum element) then
¥(M) is an upper semimodular sublattice of (Sz, 8).

Proof. That ¥(M) is a meet sublattice with a maximum element automatically
implies that ¥(M) is a lattice.

To prove that ¥(M) is upper semimodular is enough to prove that ¥(M ) satisfies
the W.U.S. condition. To this end let w and v € ¥(M), w A v &€ ¥(M). Now let q be
some upper bound for both v and w and assume that there are adjacent transpositions t
and t’ such that t(w) = w A v, t/(v) = w A v (i.e.,, w A v is covered by both v and w).
The consistency of ¥(M) allows us then to apply Corollary 3.1 (ii) to conclude that
t Nt' = &, which in turn implies by the quadrilateral rule that the element w V v =
t™!(v) € ¥(M) satisfies that t'(w V v) = w. This proves that w \V v covers both w and
v which is the conclusion of the W.U.S. condition. O

Notation. For the remainder of this section we will follow the following notational
conventions.

1. Ch will always denote a saturated chain (or pseudochain) Ch = (P, Py, - -+ , Py)
where t;(P;)) =P, fori=0, --- , k — 1.

ii. [Po, Pi]={peCh|P,BpB P;i}; Chi = ¥([Py, Pi]).

The following basic properties of the weak Bruhat order will be instrumental in the
proof of the main result of this section.

LEMMA 3.6. For p € Sy consider the set E(p) of noninversions of p as a binary
relation on Z and denote by (E(p))* its transitive closure. With these conventions,
we have:

1. p V q is the unique permutation satisfying that E(p V q) = (E(p) U E(q))*;

ii. Ifp=uxyvandq = u'xyv’' where x <y, u and u' in Ss,, vand v' in Sz,, then
pVqg=(uVu)xy(vVvv)

. Ift = (x,y) € E(p) N E(q) and if't is an admissible transposition of p then
pVvVa=t(p)Va.

Proof.

1. For the proof, see Berge [7].

i. Note that E(p) and E(q) differ only in E(u), E(u’), E(v), and E(v'), respectively.
This forces (E(p) U E(q))* to be equal to E((u V u’)xy(v V v')), which together with
(1) implies that p V g = ((u V u’)xy(v V v')).

ii. The fact that (x, y) € E(p) — E(t(p)), E(t(p)) < E(p), and (x, y) € E(q)
implies that E(t(p)) U E(q) = E(p) U E(q) and again by (i), t(p) Vq=p V q. O

Theorem 3.2 (the projection theorem) and the Q-rule, together with the fact that
[Py, P;] isa saturated chain (or pseudochain ) imply that Ch; = ¥([P,, P;]) is a connected
subset of Ss.

Now, if i = 1, ¥([Py, P;]) = (Po, P;), which is clearly a join sublattice with top
element Py. For the general case note that Chy . — Chy = ti+ (115 p,) by Corollary
2.2. But this is saying that Chy | — Chy is obtained from []{* p, by right multiplication
by a fixed permutation, namely the one corresponding to the transposition t . ;. Moreover,
if two elements are adjacent in [] ™ p , their images under t, ., must be adjacent. So
we have here a one-to-one mapping that preserves adjacencies and therefore distances
under 8. Therefore, if v, w € Chy .y — Chy then tik ;(w) and ti} (v) € [I % p., and by
Lemma 3.6 (ii) we can assume that z = ti} ;(w) V tzh (v) € H,Ck’ikhpk, which allows us
to conclude that ty + (z) = w V ve Chyyy — Chy. If ve Chand w € Chy, | — Chy, then
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the fact that Ch, is extensible by (£ 1, Px) allows us to apply Lemma 3.6 (iii) by letting
q=vandp = til,(w) to obtain that v V. w € Chy + ;.

The preceding arguments show that C#; is a sublattice of < Sz, 8) with top element,
and therefore by Lemma 3.5 we have the following promised result.

THEOREM 3.3. If M is a saturated chain in the weak Bruhat order then ¥(M) is
an upper semimodular sublattice of (Sz, B).

Remarks. The preceding results play a central role in the algorithmic construction
of maximal consistent sets which contain a saturated chain (or pseudochain) Ch in
(Ss, B). It says that if Ch; = ¥([Po, P;]) has been constructed then to find gfg,,,i one
backtracks (in Ch;) from P; by following any path whose transpositions are disjoint from
t;+,. At every step all that is required is to find one incoming transposition / disjoint
from t;, ,. Theorem 3.3 guarantees that the process will stop if and only if at some point
we reach one permutation all of whose incoming transpositions intercept t; , ; (the formal
algorithm can be found in Abello [1], [4], where it is called the MCCS algorithm).

4. Weak Bruhat order, consistent sets and Catalan numbers. We will prove here
that the #nth Catalan number is an upper bound for those consistent sets containing a
Maximal pseudochain in the weak Bruhat order.

DEFINITION 4.1.

i. If M is a connected subset of Sg, its diameter, diam (M), is defined as diam (M) =

max |SPATH (P, Q)|.
{PQ}cM

ii. For a saturated chain (pseudochain) Ch = [P, Q] in (S;, 8) denote by
OTRAN (Ch) the ordered set of transpositions used in Ch, namely OTRAN (Ch) =
{t:}i=chi—1 where t;+(P;)=Pi,,, PieCh; and let Ch* be the subsequence of
OTRAN (Ch) consisting of transpositions involving x € Z. Elements of Ch* will be
distinguished by having a superscript x, namely, Ch* = (t}, t3, - -+, t}).

iil. [/;, k] = {/; € OTRAN (Ch) such that j =i = k}.

iv. For a subsequence (I, b, - -+ , ;) of Ch* and a permutation Q, we will write
(4;, - -+, h)(Q) to denote the sequence of permutations (Q = Qo, Qi, -, Q;) where
Qi+l = ll(Ql) fori= 19 o ’j - L

The following is a technical lemma that will allow us to single out a very special
canonical subchain in Mg,.

FACT 4.1. Assume that [p, v] is a saturated chain in {Ss, B) such that p, = v; =
x€Z and p, = Vi+1 =y € Z and let us recall that if p € Sz, 7(p) denotes its admissible
set of transpositions. If t,, t, € OTRAN ([p, v]) are such that ty = t1 = (x,a), t, = t3 =
(x,b),a#vy,b#ywihty € 17(Q), t, € 7(R) and [Q, R] < [p, v] then Mpr) =
M (pQ1Uct -1, - tas 2(Q)- We Will say in this case that the sequence (Lg+1, -~ - , t,-1) has
been lified by the transposition t, (see Fig. 4.1).

Proof. Mpr) = Mp.Qiuct_1, -+ igs 1@ DY the definition of tg and t,.

(i) t, = t3 = each transposition in (tq+, * - , t.—) does not involve x.

(ii) t, =t} and the assumption that [Q, R] is a chain — each transposition in
(tg+1, - - -, t.—;) does not involve the symbol a.

Therefore, the Quadrilateral rule (Corollary 3.2), can be applied (iteratively) to
(tq+1, -+ ,t—) by (i) and (ii) and the result follows by the maximality of M, ). a

Remark. The idea of lifting one sequence, by one transposition (Fact 4.1),
can be used iteratively, in certain cases, to lift one sequence by another as follows. Con-
sider two permutations p and q such that p 8 q, p; = q; = x and assume that there is
a saturated chain Ch from p to q such that if t = (a, b) € OTRAN (Ch) then a # x #
b. Now, let LEFT (Ch) = (t;, - - - , t;) denote the subsequence of OTRAN (Ch) ob-
tained by deleting from it those transpositions using symbols in {p;, -+ - , Pj-1 } . Simi-
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P= xi-y P=x---y
Q=xa..y Q=xa..y.
tq
(t,(Q) =ax--y-- Caun st y)
J (tqd»"' vtr—1) xab--y--
dta
R=axb--y-- R=axb--y--
\t/(R) =abx:-y-- t,(R) =abx--y--
Veeoxyee Veooexye-
FIG. 4.1. The lifing of a sequence (1,41, - - - , t,_1) by a transposition 4.
larly, let RIGHT (Ch) = (4;,, - - - , t;,.) denote the subsequence of OTRAN ( Ch) obtained
by deleting from it those transpositions using symbols in {p;+,, ---, p}. (For our

purpose assume that both LEFT (Ch) and RIGHT (Ch) are nonempty and that the
last transposition of OTRAN (Ch) is an element of RIGHT (Ch)). Note that if
te LEFT (Ch) and t'e€ RIGHT (Ch) then tNt'= . This together with the as-
sumption that Ch is a saturated chain in 8 all of whose elements have the symbol x
exactly in the same position implies that the sets of permutations (t, ---, ti,)(p) and
(t,., - -+, t;,)(p) are saturated chains in (S, 8). This can be seen by an iterated
lifting of certain subsegments of the sequence LEFT (Ch) by each of the elements of
RIGHT (Ch) (in reverse order) in an iterated fashion. The figure below illustrates
this process for the case where RIGHT (Ch) consists of two transpositions only. Note
that because here we use only the Quadrilateral rule, then the set of ordered triples of

(ti, ~ -, t,)(P), T((t, - -,t,)(p)), together with the set of ordered triples of
(ty, == t)(p), T((t,., ---, t;,)(p)), is precisely equal to the set of ordered triples
of Ch, T(Ch).

Note that because the process depicted in Fig. 4.2 consists of repeated applications
of the Quadrilateral rule, we can be sure that all the saturated chains C#’ from ptoq
that are obtained in this manner satisfy that T(Ch’) = T(Ch) which means that Ch’
¥(Ch). In particular this is true for the chain determined by using first (in order) the
transpositions of LEFT (Ch) and then the transpositions of RIGHT ( C#), which in our
unwanted (very clumsy ) notation is denoted by ((t;,., - - - , ) (ti, -+, 6,))(P).-

We collect the preceding remarks and the process depicted in Fig. 4.2 in the following
result.

FACT 4.2. Let p, q be permutations in Sy that satisfy p 8 q, p; = q; = xand let Ch
denote a saturated chain from p to q such that if t = (a, b) € OTRAN (Ch) then a #
x # b. Under these conditions it is possible to find a saturated chain Ch’ from ptoq
such that: '

1. OTRAN (Ch') consists first of all tranpositions in OTRAN (Ch) which use
only symbols in {pj.+;, -, ps} (call this set LEFT (Ch)) followed by all transpo-
sitions in OTRAN (Ch) using only symbols in {p;, - - -, p;j—1} (call this set RIGHT
(Ch)) (or vice versa). In symbols: OTRAN (Ch’) = (LEFT (Ch), RIGHT (Ch)) or
OTRAN (Ch') = (RIGHT (Ch), LEFT (Ch)).

. T(Ch") = T(Ch) or equivalently Ch’' = W(Ch).

ii. (a) If RIGHT (Ch) = (t;, ---, t,,) then all the permutations in the set
(tiy., -+, t,)(p) have as a common suffix the subpermutation Dj+1° " Pn. By delet-
ing this common suffix from all of them we obtain a saturated pseudochain in
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N
FIG. 4.2. Lifting of a sequence LEFT (Ch) by another sequence RIGHT ( Ch) = (4, ti,). This assumes that
all the elements in the chain Ch from p to q contain a fixed symbol x in exactly the same position.

(Sipy, - 13> By from pro--pi-1 10 Qi -Qj-1. Call this pseudochain RE-
STRICTED_RIGHT (Ch) and its closure FIRST_HALF ¥(Ch).

(b) If LEFT(Ch)=(t,, - ,t,) then all the permutations in the set
(ty, -, ti,)(p) have as a common prefix p;- - -pj—:. By deleting this common prefix
from all of them we obtain a saturated pseudochain in (S(p,, ,, - .pn}» 8) frOM Pj+1° " *Pn
10 gj+1- - “Qn. Call this pseudochain RESTRICTED_LEFT (Ch) and its closure SEC-
OND_HALF ¥(Ch).

As a justification (if any) for the definitions given in (a) and (b) above we have
the following:

(c) For a chain Ch satisfying the restrictions given above we have that ¥(Ch) =
FIRST_HALF (¥(Ch)) X [x] X SECOND_HALF (¥(Ch)), (here X denotes cross
product).

Note. Everything we have discussed after Fact 4.1 is put very concisely in the fol-
lowing definition and theorem. However, if the reader feels comfortable he/she may
jump directly to the remarks preceding Theorem 4.2 without losing continuity.

DEFINITION 4.2.

i. For (t,,t, "*-,t) a subsequence of OTRAN ([P,PR]) such that
(ti,» Gy, -+, 1) = (1§, 13, - -+, t]) denote by {Q/}})=, the subchain of [P, P®] such that
t} € 7(Q)).

ii. Let LEFT (t}, t},;) denote the subsequence of [t,, t,,] obtained
by deleting from it those transpositions using symbols that precede x in Q. Similarly,
let RIGHT (t}, t},,) denote the subsequence of [t;, t,,] obtained by deleting from it
those transpositions using symbols that follow x in Q;.

iii. Let TRANSFORM (t}, t4,) = (RIGHT (t}, tf+), LEFT (1], t/+1), t7) and
TRANSFORM (t}, tf) = (TRANSFORM (t}, tf:1), TRANSFORM (t}+1, ti+2),
-+, TRANSFORM (tj_, t})).

The following result is just an iterated application of Fact 4.1 in which a sequence
was lifted by one transposition. In the following theorem a sequence is lifted by another
sequence.

THEOREM 4.1. If (t;, tiy, -, t) = (11, 13, ==+, 1) with tf € 7(Q), t] = t, €
7(S)and [Q, S] < [p, v] then Mps) = M(pQju(1}, TRANSFORM (1}.4))(Q)-

Proof. (By induction on j). .

Basis. Ifj = 2, the result follows from Fact 4.1.

Induction Hypothesis. Assuming the result is true for j, we will prove it forj + 1.

Suppose (%, * -, i, 4, ) = (t}, 13, -, th,t5,) and let ten(R), t, €
r(u) with [p,R]JU[R,u]lc[p,v]. By Induction Hypothesis Mg =
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Mip.Q1U (1} TRANSFORM Q- By definition of t},, every transposition in
OTRAN [t;(R), u] does not use the symbol x. This implies that the quadrilateral rule
may be applied to OTRAN [t;(R), u] to lift the transpositions in LEFT (tf, tfs)) by
those transpositions in RIGHT ( tf, tf+1)/t}+,. But this means that instead of
OTRAN [t;(R), u] we may use (RIGHT (t, tf+1), LEFT (t}, t,,)). Therefore, Mpu)
= M5.010 54 LRIGHT (8.4 ).LEFT (143, 1,11 TRANSFORM (1}, bY Induction Hypothesis and
by the maximality of M, ,;. Now, by noticing that the right-hand side of the last equation
1s equal to M[p,Q]U(t;‘ + 1. TRANSFORM (1}t 1)) the result follows. O

Remarks. We have seen that a shortest path SPATH (p, q) is mapped bijectively
to a saturated chain Ch in (S;, 8) by left multiplication by p~'. This induces a
map from the ordered triples of SPATH (p, q), T(SPATH (p,q)), to the ordered
triples of Ch, T(Ch); namely, if R € SPATH (p, q), (x, y, z) € T(R) if and only if
(p™'(x), p'(y), p'(2)) € T(p~'*R). But this means that w € W(SPATH (p, q)) if
and only if p~'-w € ¥(Ch); therefore, | ¥(SPATH (p,q))| = | Y(Ch)|. Therefore, for
every maximal connected consistent set (m.c.c.s.) M c Ss of diameter () wheren = | Z|
there exists a m.c.c.s. M’ < Sy that contains a maximal chain such that IM| = |[M'|.
This is not saying that all such sets (with the same diameters) have the same cardinality
(in fact their cardinalities are in general quite different as proved in Abello [2-4]). With
this in mind we will denote by M; any maximal connected consistent subset of Sy where
|Z| = j. Now if M has diameter (3) we may assume that it contains a maximal chain
under 3.

Finally, we will prove the next result which relates Catalan numbers and maximal
connected consistent sets.

THEOREM 4.2. For | Z| = n. If My, denotes a maximum connected consistent subset
of {Sz, B) of diameter, diam (M,) = (3) then {M,, B) is an upper semimodular lattice
with cardinality IMy| < (1/n + 1)(%) = the nth Catalan number C, forn > 2.

Proof. The upper semimodularity of (M, B) was established in the preceding section
(Theorem 3.3), so we will prove here that |M,| < C,.

For simplicity in notation we will write []Z to denote the projection set [12of B
with respect to (¢, P), if there is no danger of confusion.

(1) By the remarks preceding this theorem we may assume that M,, contains a max-
imal chain Ch = [I,I®]in 8. LetI, = x€ = and I, = y € Z. By noting that x never moves
to the left in Ch we have that OTRAN (Ch) = (t,, - -, t(3)) imposes a total order < on
Z — x given by b; < b;if and only if t; = (x, b;), t=(x,b)andi<]j.

(i1) Now, by letting M = {we M,: w; = x} we have an ordered partition of M,
namely, (M', ---, M") and 3 u € M’ such that t;,(u) € Mi*' where t, = (x,b;) and b is
as defined in (i).

(ili) By the projection theorem (Theorem 3.2), the definition of M’ and (i), we
have that [1}" = M and t;(TIM) c Mi*+!. ‘

(iv) On the other hand, if ve M'*!/t;(IIM') then the set of symbols{v,, [ <
i+ 1} = {b,/<i+ 1} by (i) and by the order imposed on Ch.

(v) (iii), (iv), and the fact that v; ; = x allow us to conclude that
Mi+ 1 c ‘I’( Chx)

(vi) where Ch' is the saturated chain of C/ between ti—:(p) and t{'(q), with the
understanding that to(p) should be taken as I. By Fact 4.2 (iit) (c) we know that
W(Ch') = FIRST_HALF (¥(Ch')) x { x} x SECOND_HALF (¥(Ch')) where FIRST_
HALF (¥(Ch')) = Sipu<i+1; and SECOND_HALF (¥(Ch')) < Sz (byi<i+1) are
consistent and connected sets, each of which contains a pseudochain. Therefore,
|FIRST_HALF (¥(Ch'))| = |M;| and |SECOND_HALF (¥(Chi))| < [Mp_i-ql,
which in turn imply by (v) that [M'*!| = |M;|%|M._;_,].

(vil) This, together with (ii) above, give us |[M,| = P |Mi+!| < S/ | M; | *
IMo_i— | with [Mo| =1, IM;| = 1, [M]| =2, |[M3] = 4.



THE WEAK BRUHAT ORDER OF Sz 15

Inequality (vil) and the fact that the Catalan numbers {C,} satisfy that C, =
24 C;#C, -1 with the same boundary conditions allow us to apply induction on n
to get that |M,| < C, for every n > 2. O

COROLLARY 4.1. If M, is a maximal consistent subset of Sz of diameter
diam (M,) = (3) then |[My| < 41,

Proof. The proof follows from the preceding theorem and from the fact that C, =
41, g

Remarks. The preceding results suggest the possibility of studying the structure of
maximal consistent sets by looking at them as representing a certain restricted collection
of binary trees or as a certain subcollection of stack permutations (de Bruijn [11]). The
multiple interpretations offered in the literature to the Catalan numbers, C,, (de Bruijn
[11], Feller [14], Gardner [16], Klamer [18]), could be a good source of ideas to shed
new light on the problem in question. This approach has not yet been pursued.

The unexpected relationship between C, and |M,| established in Theorem 4.3
offers the (unique) best known upper bound at present. In a forthcoming paper we will
prove that |M,| is not bounded by 2* for all n, as was conjectured in [2]. We conjecture
that in general any consistent set M Sz satisfies that |M| < 417! for |Z| > 2 and
that if M contains a maximal pseudochain in the weak Bruhat order then |M| <3'>171.

We suspect that a general bound for connected consistent sets between 3'*'~ ! and
4%~ is a very hard result to obtain because the structure of general connected sets is
as random as that of unconnected ones. Moreover, relating connected consistent sets to
unconnected ones appears to be a very hard problem. In Abello [1] we present a very
surprising bijection of this type that gives a unified view of several constructions (con-
nected and unconnected) offered in the past.

Conclusions. We have seen that maximal pseudochains in (Ss, B) are a very im-
portant substructure of those maximal consistent sets which contain them. From the
Arrow’s Impossibility Theorem point of view (Abello [4], Arrow [5]), the results obtained
here indicate that the majority rule produces transitive results if the collection of voters
as a whole (at least in the extensible cases covered by Theorem 3.2), can be partitioned
into no more than (n? + n)/2 groups that can be ordered according to the level of
disagreement they have with respect t0 a fixed permutation p. On the other hand, by
viewing Sy as a Coxeter group (Benson and Grove [6], Bourbaki [10], Coxeter and
Moser [13], Stanley [23]), these results provide a “novel” interpretation of the following
partition of the collection Q of maximal chains in the weak Bruhat order. Namely, if for
Ch and CH’ € Q we let Mg, and Mgy be the maximal consistent sets containing them,
respectively, then the relation ~ given by Ch ~ Ch' if and only if M, = Mgy parti-
tion @ and our results say that {Ucz’~ cx CH', B) is an upper semimodular sublattice of
(Sz, B) such that [Uck’~ cn Ch’1 < the | Z|th Catalan number. Now, ify=(t, " ,4)
is a reduced decomposition of Wo = minimum element in {Sz, 8), any other reduced
decomposition of w, may be obtained from + by using two types of transformations
known as Coxeter relations of type I and of type II (see Benson and Grove [6]). Our
Projection Theorem (Theorem 3.2) shows that Ch ~ Ch' if and only if Ch' may be
obtained from Ch by using transformations of type I only; therefore, we have obtained
a “new” combinatorial interpretation of the collection of chains which can be obtained
from one another by using Coxeter transformations of type 1 or type II exclusively.
Namely, for Ch' € Q, if Qcp = {Ch € Ch can be obtained from Ch' by using Coxeter
transformations of type I only } then the set Uckean. Ch does not contain a cyclic triple
(or Latin square) in the sense of Definition 1.1.

If one is puzzled by the fact that we never said what these transformations were, it
should suffice to say that what we call transformations of type 1 correspond to inter-
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changing ¢; and ¢, ,, in the reduced decomposition v of wy, if and only if they are
“disjoint.”

We close with the following question: What is the corresponding combinatorial
interpretation of the projection theorem for general coxeter groups?

Acknowledgments. We thank professors Gill Williamson, Anders Bjorner, Adriano
Garsia, and Jeff Remmel for valuable suggestions, an anonymous referee whose detailed
comments improved the presentation, and Ms. Ruth Cintron for encouragement
throughout this project.

REFERENCES

[1] J. M. ABELLO, Algorithms Jor consistent sets, Congressus Numerantium, 53 (1987), pp. 23-38.
[2] , Intrinsic limitations of the majority rule, an algorithmic approach, SIAM 1J. Algebraic Discrete
Meth., 6 (1985), pp. 133-144.
[3] J.M. ABELLOAND C.R.J OHNSON, How large are transitive simple majority domains?, SIAM J. Algebraic
Discrete Meth., 5 (1984), pp. 603-618.
[4] J. M. ABELLO, 4 study of an independence system arising in group choice via the weak Bruhat order,
Ph.D. Thesis, University of California, San Diego, CA, 1985.
[5] K. J. ARROW, Social Choice and Individual Values, John Wiley, New York, 1951.
[6] C. T. BENSON AND L. C. GROVE, Finite Reflection Groups, Bogden and Quigley, New York, 1971.
[7] C. BERGE, Principles of Combinatorics, Academic Press, New York, 1971.
[8] G. BIRKOFF, Lattice Theory, Amer. Math. Soc. Collog. Publ. No. 25, American Mathematical Society,
Providence, R.1., 1967.
[91 D. J. BLACK, The Theory of Committees and Elections, Cambridge Press, London, 1958.
[10] N. BOURBAKI, Groupes et algébres de Lie, chapters 4-6, Fascicule XXXIV, Eléments de mathématique,
Hermann, Paris, 1968.
[11] N. G. DE BRULN AND B. J. M. MORSELT, A note on plane trees, J. Combin. Theory, 2 (1967), pp. 27-
34,
[12] MARQUIS DE CONDORCET, Essai sur I’Application de | ‘Analyse d la Probabilité des Decisions Rendues ¢
la Pluralité des Voix, Paris, 1785.
[13] H. S. M. COXETER AND W. O. J. MOSER, Generators and Relations Jor Discrete Groups, 2nd edition,
Springer-Verlag, New York, 1965.
[14] W. FELLER, An Introduction to Probability Theory and Its Applications, John Wiley, New York, 1950.
[15] P.C. FisHBURN, Conditions Jfor simple majority decision with intransitive individual indifference, J. Econom.
Theory, 2 (1970), pp. 354-367.
[16] M. GARDNER, Mathematical games, Catalan numbers: an integer sequence that materializes in unexpected
Dlaces, Scientific American, 234 (1976), pp. 120-125.
[17] 1.J. GooD, The number of ordering of n candidates when ties are permitted, Fibonacci Quart., 13 (1975 ),
pp. 11-18.
[18] D. A. KLAMER, Correspondence between plane trees and binary sequences, J. Combin. Theory, 9 (1970),
pp. 401-411.
[19] E. L. LEHMANN, Some concepts of dependence, Ann. Math. Statist., 37 (1966), pp. 1137-1153.
[20] W. H. RIKER, Arrow’s theorem and some examples of the paradox of voting, Foundation monograph,
Southern Methodist University Press, Dallas, 1961.
[21] L R. SAVAGE, Contributions to the theory of rank order statistics, the “trend” case, Ann. Math., Statist.,
28 (1957), pp. 968-977.
, Contributions to the theory of rank order statistics: Application of lattice theory, Rev. Internat.
Statist. Inst., 32 (1964), pp. 52-64. ‘
[23] R. P. STANLEY, On the number of reduced decompositions of elements of Coxeter groups, Europ. J.
Combinatorics, 5 (1984), pp. 359-372.
[24] S. WILLIAMSON, Combinatorics Jor Computer Science, Computer Science Press, MD, 1985.
[25] B. WARD, Majority voting and alternative forms of public enterprises, in The Public Economy of Urban
Communities, ). Margolis, ed., Johns Hopkins Press, Baltimore, 1965, Chapter 6, pp. 112-126.
[26] T. YANAGIMOTO AND M. OKAMOTO, Partial ordering of permutations and monotonicity of a rank correlation
Statistic, Ann. Inst. Statist. Math., 21 (1969), pp. 489-506.

[22]



